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Abstract. In the context of the study of the set covering polyhedron of
circular matrices, we study the relationship between row family inequali-
ties and a previously proposed class termed minor inequalities. Recently,
a complete linear description of this polyhedron has been provided in
terms of row family inequalities. In this work we prove that for the par-
ticular subclass of circulant matrices, the corresponding row family in-
equalities are related to circulant minors. Moreover, we extend previous
results on circulant matrices Ck

sk, s ∈ {2, 3} and k ≥ 2, by providing a
polynomial time separation algorithm for the inequalities describing the
set covering polyhedron of matrices Ck

4k, k ≥ 2.
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1 Introduction

The (weighted) set packing problem (SPP) and set covering problem (SCP) are
classic problems in combinatorial optimization with important practical appli-
cations, but hard to solve in general. These problems can be stated as

(SPP) max{cTx : Ax ≤ 1, x ∈ {0, 1}n},
(SCP) min{cTx : Ax ≥ 1, x ∈ Zn+},

where A is an m× n matrix with 0, 1 entries, c ∈ Zn, and 1 ∈ Zm is the vector
having all entries equal to one.

One established approach to tackle these problems has been to study the
polyhedral properties of their sets of feasible solutions. The set packing polytope
P ∗(A) (resp. set covering polyhedron Q∗(A)) is defined as the convex hull of all
feasible solutions of SPP (resp. SCP). The structure of P ∗(A) and Q∗(A) has
been extensively addressed in previous works (see, e.g., [10, 11] for two seminal
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articles). However, the set packing problem has traditionally received more at-
tention in the past, mainly in the context of the equivalent stable set problem
on graphs.

Although SPP and SCP are NP -hard problems in general, some interesting
polynomial time solvable particular cases have been described in the literature.
It is natural to ask whether an explicit description in terms of linear inequalities
can be provided for P ∗(A) or Q∗(A) in these cases. In this paper, we focus on
the case of circular matrices and their subclass of circulant matrices defined in
the next section. The set packing polytope related to these matrices has been
completely described in [8, 12] and more recent works [2–5, 13, 14] have addressed
the task of obtaining a similar results for the set covering polyhedron.

The characterization of the set covering polyhedron related to circular matri-
ces has followed two lines of research. On one hand, the class of minor inequalities
was proposed in [2] and further studied and extended in subsequent works. These
valid inequalities are related to certain substructures of the circular matrix called
circulant minors. On the other hand, row family inequalities were introduced in
[3] as a counterpart of clique family inequalities, which played a central role in
the linear description of the set packing polytope of circular matrices in [8]. Re-
cently, a complete linear description of Q∗(A) has indeed been provided in terms
of row family inequalities [14]. Moreover, minor inequalities can be interpreted
as a special case of row family inequalities. In this paper, we further explore the
relationship between these two classes of inequalities. As it turns out, certain
row family inequalities related to circulant minors are sufficient for describing
the set covering polyhedron related to circulant matrices.

From an algorithmic point of view, it is important to ask whether these new
classes of valid (or facet defining) inequalities can be separated efficiently. The
separation problem for certain classes of minor inequalities has been addressed
in previous works [4, 13]. In this article, we provide a new polynomial separa-
tion algorithm for a class of row family inequalities related to certain relevant
circulant matrices.

The paper is organized as follows: in the next section we introduce some
notation and preliminary concepts, among them the classes of minor and row
family inequalities for the set covering polyhedron. In Section 3 a combinatorial
interpretation of row family inequalities is provided. Based on this interpretation,
a complete linear description of the set covering polyhedron related to circulant
matrices is proposed in Section 4, in terms of a particular subclass of row family
inequalities related to circulant minors. Finally, a separation algorithm for a new
class of row family inequalities in presented in Section 5.

2 Preliminaries

For n ∈ N, let [n] denote the additive group defined on the set {1, . . . , n}, with
integer addition modulo n. Given A a 0, 1 matrix we say that a row v of A is
a dominating row if v ≥ u for some u row of A with u 6= v. Throughout this
article, we consider matrices with 0, 1 entries, without zero columns and without



dominating rows. Moreover, if A is such a matrix of order m×n, then we consider
the columns (resp. rows) of A to be indexed by [n] (resp. by [m]). Two matrices
A and A′ are isomorphic, denoted by A ≈ A′, if A′ can be obtained from A by
permutation of rows and columns.

A cover of A is a subset of [n] whose incidence vector x satisfies Ax ≥ 1.
Whenever there is no risk of confusion, we refer indistinctly to a subset of [n] and
to its incidence vector. The covering number τ(A) of a matrix A is the minimum
cardinality of a cover of A.

The term boolean inequality denotes each of the inequalities of the system
Ax ≥ 1, x ≥ 0. The inequality

∑n
i=1 xi ≥ τ(A) is called the rank constraint, and

it is always valid for Q∗(A).
A matrix A is called circular if, for every row i ∈ [m], there are two integer

numbers `i, ki ∈ [n] and 2 ≤ ki ≤ n − 1 such that the i-th row of A is the
incidence vector of the set Ci := {`i, `i+1, . . . , `i+(ki−1)} ⊂ [n]. In the special
case where A is a square circular matrix of order n and `i = i, ki = k hold for
every row i ∈ [n], A is called a circulant matrix and denoted by Ckn.

When A = Ckn it is known that τ(Ckn) =
⌈
n
k

⌉
and the rank constraint is a

facet of Q∗(Ckn) if and only if n is not a multiple of k [11].
Given N ⊂ [n], the minor of A obtained by contraction of N , denoted by

A/N , is the submatrix of A that results after removing all columns with indices
in N and all dominating rows. In this work, anytime we refer to a minor of a
matrix, we mean a minor obtained by contraction.

A minor of a matrix A is called a circulant minor if it is isomorphic to a
circulant matrix.

In [8, 12] the authors proposed a complete linear description of the stable set
polytope of circular graphs, which is equivalent to obtaining a complete linear
description for the set packing polytope related to circular matrices. The authors
show that if A is a circular matrix then P ∗(A) is completely described by three
classes of inequalities: (i) nonnegativity constraints, (ii) clique inequalities, and
(iii) the class of clique family inequalities introduced in [9].

Following a similar pattern, in [3] the class of row family inequalities (rfi) was
proposed as a counterpart, in the set covering case, of clique family inequalities.
We describe them at next, slightly modified to fit in our current notation.

Let A = (aij)m×n, F ⊂ [m] a set of row indices of A, with s := |F | ≥ 2,

p ∈ [s− 1] such that s is not a multiple of p, and r := s− p
⌊
s
p

⌋
. Define the sets

I(F, p) =

{
j ∈ [n] :

∑
i∈F

aij ≤ p
}
, O(F, p) =

{
j ∈ [n] :

∑
i∈F

aij = p+ 1

}
.

The row family inequality (rfi) induced by (F, p) is

(r + 1)
∑

j∈O(F,p)

xj + r
∑

j∈I(F,p)
xj ≥ r

⌈
s

p

⌉
. (1)

Row family inequalities generalize several previously known classes of valid
inequalities for Q∗(A). However, in contrast to clique family inequalities, row



family inequalities are not valid for Q∗(A) in general. In [3] it is proved that (1)
is valid for Q∗(A) if the following condition holds for every cover B of A:

p |B ∩ I(F, p)|+ (p+ 1) |B ∩O(F, p)| ≥ s. (2)

In particular, if p + 1 = maxj∈[n]
∑
i∈F aij , the inequality is always valid

for Q∗(A). More recently, following the same ideas proposed in [8] for the set
packing case, it has been proved that

Theorem 1. [14] Given a circular matrix A ∈ {0, 1}m×n, every non boolean
non rank facet defining inequality of Q∗(A) is a row family inequality induced by
(F, p) with F ⊂ [m] and p + 1 = maxj∈[n]

∑
i∈F aij. Moreover, if s = |F |, the

roots of this facet defining inequality have cardinality
⌈
s
p

⌉
or
⌈
s
p

⌉
− 1.

In the particular case when A = Ckn, non rank facet defining inequalities of
Q∗(Ckn) related to circulant minors were studied in [2, 4, 5, 13, 14]. Given N ⊂ [n]
such that Ckn/N ≈ Ck

′

n′ , let W := {j ∈ N : j − k − 1 ∈ N}. Then, the inequality

2
∑
j∈W

xj +
∑
j /∈W

xj ≥
⌈
n′

k′

⌉
(3)

is valid for Q∗(Ckn), and facet defining if n′ mod k′ = 1. This inequality is termed
as the minor inequality induced by N [2].

Circulant minors, and the inequalities related to them, have an interesting
combinatorial characterization in terms of circuits in a particular digraph. In
fact, given a circulant matrix Ckn, a directed auxiliary graph G(Ckn) is defined
in [7], by considering n nodes and arcs of the form (i, i + k) and (i, i + k + 1)
for every i ∈ [n]. The authors prove that if N ⊂ [n] induces a simple circuit
in G(Ckn), then the matrix Ckn/N is a circulant minor of Ckn. Later, Aguilera
[1] showed that Ckn/N is isomorphic to a circulant minor of Ckn if and only if
N induces d ≥ 1 disjoint simple circuits in G(Ckn), each one having the same
number of arcs of length k and k + 1.

Using this last result, it has been proved in [4] that if Ckn/N ≈ Ck
′

n′ holds for
some N ⊂ [n], and if F := {i ∈ [n] : i+1 /∈ N}, then k′+1 = maxj∈[n]

∑
i∈F aij ,

n′ = |F |, and {j ∈ [n] :
∑
i∈F aij = k′+1} = {j : j−k−1 ∈ N} = W . Moreover,

the rfi induced by (F, k′) has the form

(r + 1)
∑
j∈W

xj + r
∑
j /∈W

xj ≥ r
⌈
n′

k′

⌉
, (4)

with r = n′−k′
⌊
n′

k′

⌋
. These inequalities generalize minor inequalities (3), as the

latter ones correspond to the case when r = 1. Since, at the time, they are a
particular subclass of row family inequalities, they are termed as minor related
row family inequalities in [14].

In the next section we provide a combinatorial characterization of the rfi’s
described in Theorem 1. Our result is obtained by following the same ideas
proposed in [8, 12] for a similar characterization of the clique family inequalities
related to the stable set polytope of circular graphs.



3 A combinatorial characterization of row family
inequalities

Given a circular matrix A, let D(A) = (V,E) be a directed graph where V = [n]
and the arcs in E are of the form:

(i) {(li − 1, li + ki − 1) : i ∈ [m]}, called row arcs. Observe that each row arc
corresponds to a row of matrix A.

(ii) {(i− 1, i) : i ∈ [n]} and {(i, i− 1) : i ∈ [n]}, called (+1)-arcs and (−1)-arcs,
respectively.

From the proof of Theorem 1, it follows that each rfi describing a facet of
Q∗(A) is induced by the set of rows corresponding to the row arcs of a simple
circuit in D(A). In the following, we characterize the structure of the rfi’s de-
scribing Q∗(A) in terms of the combinatorial parameters of its associated simple
circuits in D(A).

Given a simple circuit Γ in D(A), we denote by V (Γ ) and E(Γ ) the set of
nodes and the set of arcs in Γ . A simple circuit Γ in D(A) partitions the set of
nodes V into the following sets:

(i) ◦(Γ ) = {i ∈ [n] : (i− 1, i) ∈ Γ}, denoted as the circles of Γ ,
(ii) ⊗(Γ ) = {i ∈ [n] : (i, i− 1) ∈ Γ}, called the crosses of Γ , and,
(iii) •(Γ ) = [n] \ (◦(Γ ) ∪ ⊗(Γ )), the bullets of Γ .

Observe that if i ∈ •(Γ ) then either i /∈ V (Γ ) or it is the tail or the head of
a row arc in Γ .

Given e ∈ E, we denote by l(e) the length of e, defined as follows: if e is a
row arc corresponding to the i-th row of A, l(e) = ki, if e is a (+1)-arc (resp.
(−1)-arc), l(e) = 1 (resp. l(e) = −1).

The winding number of a simple circuit Γ in D is∑
e∈E(Γ ) l(e)

n
.

Circuits in D(A) fulfill the following property:

Theorem 2. Let A be a circular matrix and Γ a simple circuit in D(A) with
winding number p. Let F = {i ∈ [m] : (li − 1, li + ki − 1) ∈ E(Γ )}. Then the
following statements hold:

(i) if i ∈ ◦(Γ ) then i belongs to exactly p− 1 rows of the set {Cj : j ∈ F},
(ii) if i ∈ •(Γ ) then i belongs to exactly p rows of the set {Cj : j ∈ F},

(iii) i ∈ ⊗(Γ ) then i belongs to exactly p+ 1 rows of the set {Cj : j ∈ F}.
From the previous result, given a simple circuit Γ in D(A), if we define

F := {i : (li − 1, li + ki − 1) ∈ Γ} and p := max{∑i∈F aij : j ∈ [n]} − 1, then p
is the winding number of Γ and the rfi induced by (F, p) can be written as

(r + 1)
∑

i∈⊗(Γ )

xi + r
∑

i∈◦(Γ )∪•(Γ )

xi ≥ r
⌈
s

p

⌉
, (5)



where s = |F | and r = s− p
⌊
s
p

⌋
.

Given a simple circuit Γ in D(A), we call (5) the inequality associated with
Γ .

The next result relates facets of Q∗(A) with circuits in D(A).

Theorem 3. Given a circular matrix A, every non boolean non rank facet defin-
ing inequality of Q∗(A) is associated with a simple circuit Γ in D(A) with at
least 5 row arcs and winding number at least 2.

4 Facet defining inequalities and circulant minors

Given a circular matrix A, in this section we will associate with every facet
defining inequality of Q∗(A) a circulant submatrix of A. The results are strongly
related to the ideas in [12] for the stable set polytope of circular graphs.

In the particular case when A itself is a circulant matrix, we prove that this
submatrix is a minor, and then, all facet defining rfi’s belong to the class of
minor related row family inequalities (4).

Given a simple circuit Γ in D(A), we say that a node is essential (w.r.t. Γ )
if it is a bullet or a cross and it is the head or the tail of a row arc in Γ .

Theorem 4. Let A be a circular matrix, Γ a simple circuit in D(A), and F =
{i : (li − 1, li + ki − 1) ∈ Γ}. Then, the submatrix of A consisting of the rows
indexed by F and the columns indexed by the essential bullets of Γ is isomorphic
to the circulant Cps , where s := |F | and p is the winding number of Γ . Moreover,
gcd(s, p) = 1.

The previous result does not necessarily imply that the circulant submatrix
Cps is a minor of A, as some of its rows may dominate other rows of A (when
restricted to the columns indexed by the essential bullets of Γ ). However, it is
not hard to see that this is the case when the set of essential nodes coincides
with [n]. Moreover, as we shall see at next, this is also the case when the matrix
A is circulant. Indeed, circulant matrices fulfill the following stronger property.

Theorem 5. Let Ckn be a circulant matrix, and Γ a simple circuit in D(Ckn)
such that its associated inequality defines a facet of Q∗(Ckn). Then, ◦(Γ ) = ∅.

Remark 1. Observe that, from the previous theorem, facet defining inequalities
of Q∗(Ckn) are associated with simple circuits in D(Ckn) without (+1)-arcs.

This property is crucial to prove the next result.

Theorem 6. Let Ckn be a circulant matrix and Γ a simple circuit in D(Ckn) such
that its associated row family inequality defines a facet of Q∗(Ckn). Then, the
circulant submatrix of Ckn consisting of the rows indexed by F and the columns
indexed by the essential bullets of Γ is a circulant minor of Ckn. Moreover, the
inequality associated with Γ coincides with (4), where s = |F |, p is the winding
number of Γ , and gcd(s, p) = 1.



Summarizing all the results obtained so far we have:

Theorem 7. For any circulant matrix Ckn, Q∗(Ckn) is completely described by:

– boolean constraints,
– the rank constraint,
– minor related row family inequalities of the form (4), induced by circulant

minors Cps with s and p relative prime numbers.

Theorem 7 can be seen as the counterpart for the set covering polyhedron of
circulant matrices of a result obtained by Stauffer [12] for the stable set polytope
of web graphs STAB(W k

n ). His result states that every non boolean non rank
facet defining inequality of STAB(W k

n ) is related to a prime subweb.

5 Polynomial separation routines for SCP on matrices
Ck

tk, with t = 2, 3, 4

In [5] the authors prove that matrices Ckn with n = tk and t ≥ 2 play an
important role for the study of the set covering polyhedron of general circulant
matrices. Indeed, given a fixed k ∈ N, there exists t̂ ≥ 2 such that Ckn is a minor of
Ck
t̂k

for almost all values of n (i.e., except for a finite number of values of n). Thus,

for almost all values of n, a description of the set covering polyhedron Q∗(Ckn)
can be obtained from a description of the set covering polyhedron Q∗(Ck

t̂k
).

In the same work, the authors prove that, for all t ≥ 2, facet defining in-
equalities of Q∗(Cktk) with a right hand side being a multiple of t + 1 (called
(t+ 1)-inequalities) can be separated in polynomial time by solving tk shortest
path problems. Moreover, together with the boolean facets, these inequalities
completely describe Q∗(Cktk) for t = 2, 3 and every k ≥ 2. However, this is not
the case for t ≥ 4.

The new results in this work allow us to provide a characterization of non
boolean facet defining inequalities for Q∗(Ck4k) different from 5-inequalities ((t+
1)-inequalities with t = 4) and to prove that they can be separated in polynomial
time.

Recall that, from Theorem 3 and Remark 1, every non boolean facet defining
inequality of Q∗(Cktk) is associated with a simple circuit Γ in D(Cktk) without
(+1)-arcs, and has the form

(r + 1)
∑
i∈W

xi + r
∑
i/∈W

xi ≥ r
⌈
s

p

⌉
, (6)

where the cardinality s of the set of row arcs in E(Γ ) is at least 5, and the
winding number p of Γ is at least 2. Moreover, Theorem 1 states that the roots

of (6) have cardinality
⌈
s
p

⌉
or
⌈
s
p

⌉
− 1.

Let us consider inequalities (6) with
⌈
s
p

⌉
≥ t + 2. Otherwise, the inequality

is either not valid, or dominated by the rank inequality, or a (t+ 1)-inequality.



It is easy to see that, for every i ∈ [tk], xi = {i+ jk, j ∈ {0, 1, . . . , t−1}} is a
minimum cover of Cktk and xi = xi+jk for j ∈ [t− 1]. Observe that if we display
the elements of [tk] in t rows of k elements , then each column i corresponds to
the minimum cover xi (see Figure 1, for the case t = 4).

1 2 3 k

k + 1 2k

2k + 1 3k

3k + 1 4k

Fig. 1. [4k] elements displayed in 4 rows of k elements

We have the following result:

Theorem 8. Let t ≥ 4 and k ≥ 2. Consider a facet defining inequality for

Q∗(Cktk) of the form (6), with
⌈
s
p

⌉
≥ t+ 2. Then, 2r+ 1 ≤

∣∣xi ∩W ∣∣ ≤ t− 1, for

all i ∈ [k], r ≤
⌊
t−2
2

⌋
and

⌈
s
p

⌉
≤ 2(t− 1).

Proof. Recall that (6) is associated with a circuit in D(Cktk) without (+1)-cycles.
It is not hard to see that, if there exists xi ⊂ W , then W = [tk] and the

inequality is dominated by the rank constraint. Hence, assume
∣∣xi ∩W ∣∣ ≤ t− 1,

for all i ∈ [k].
Let i ∈ [k]. Since xi has to satisfy (6) and xi is not a root, we have that

t− 1 ≥
∣∣xi ∩W ∣∣ > r

(⌈
s

p

⌉
− |xi|

)
≥ r(t+ 2− t) = 2r,

or equivalently,

t− 1 ≥
∣∣xi ∩W ∣∣ ≥ r(⌈s

p

⌉
− |xi|

)
+ 1 ≥ 2r + 1.

Then, r ≤
⌊
t−2
2

⌋
and

⌈
s
p

⌉
≤ 2(t− 1). ut

In particular, for the cases t = 4, 5, we have the following:

Corollary 1. Let t ∈ {4, 5}. Then, every non boolean non rank facet defining
inequality of Q∗(Cktk) is of the form

2
∑
i∈W

xi +
∑
i/∈W

xi ≥
⌈
s

p

⌉
. (7)

Moreover, assume that (7) is not a (t + 1)-inequality. Then, if t = 4,
⌈
s
p

⌉
= 6,

and if t = 5,
⌈
s
p

⌉
∈ {7, 8}.



In the following, we strengthen the previous results by characterizing the
subsets W in (7) for the case t = 4.

Given i0 ∈ [4k], we denote by an 11-sequence based on i0 any set of the
form {i0 = i11, i1, . . . , i10} ⊂ {i0, i0 + 1, . . . , i0 + k − 1} with ij < ij+1 for all
j = 0, . . . , 9.

We have the following result:

Theorem 9. Consider a facet defining inequality for Q∗(Ck4k) of the form (6),

with
⌈
s
p

⌉
≥ 6. Then, the inequality is of the form

2
∑
i∈W

xi +
∑
i/∈W

xi ≥ 6. (8)

Moreover,
∣∣xi ∩W ∣∣ = 3 for all i ∈ [k] and there exist i0 ∈ [4k] and an

11-sequence based on i0 such that

[4k] \W =

10⋃
t=0

[it + tk, (it+1 − 1) + tk].

Figure 2 depicts a possible subset W associated with a facet defining in-
equality of Q∗(Ck4k) having the form (8). Observe that elements not in W induce
11 steps in the picture. For this reason, we call inequalities of the form (8) as
11-step inequalities. Moreover, this particular structure allows us to separate
11-step inequalities in polynomial time.

1 ⊗⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗⊗k
k + 1⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗ ⊗⊗⊗2k
2k + 1⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗ 3k

3k + 1⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗4k

Fig. 2. 11 steps structure. The elements of [4k] belonging to W are represented by
crosses, the remaining elements are shown as bullets.

5.1 Separation routines and compact extended formulations

For x ∈ R4k, define L(x) := 6 − ∑i∈[4k] xi. Given x̂ ∈ R4k, the separation

problem for the class of inequalities (8) can be stated as deciding if there exist
i0 ∈ [4k] and an 11-sequence based on i0 such that

∑
i∈W x̂i < L(x̂) holds for

the corresponding set W ⊂ [4k].
We have the following result:



Theorem 10. Given x̂ ∈ R4k and i0 ∈ [4k], the problem of deciding if there
exists an 11-sequence based on i0 such that

∑
i∈W x̂i < L(x̂) holds for the cor-

responding set W can be polynomially reduced to a shortest path problem.

Proof. Define the network D(i0) := (V (i0), A(i0)) where V (i0) := {i0, t} ∪(⋃10
i=1 V

i(i0)
)

, and V i(i0) = {j(i) : j ∈ [i0 + i, i0 + i+ k− 11]}, for i = 1, . . . , 10.

The set A(i0) is defined by specifying the the sets N+(v) of successor nodes, for
all v ∈ V (i0), as follows:

– N+(i0) = V 1(i0),
– For i = 1, . . . , 9 and j(i) ∈ V i(i0), N+(j(i)) = {p(i+1) : p ∈ [j + 1, i0 + (i +

1) + k − 11]},
– For j(10) ∈ V 10, N+(j(10)) = {t},
– N+(t) = ∅.

Figure 3 illustrates this construction for i0 = 1.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 t

2(1)

3(1)

4(1)

(k − 9)(1)

3(2)

4(2)

5(2)

(k − 8)(2)

10(9)

11(9)

12(9)

(k − 1)(9)

11(10)

12(10)

13(10)

k(10)

Fig. 3. D(1) = (V (1), A(1)).

Finally, arc costs are defined by:

– c(i0, j
(1)) =

∑j−1
p=i0

(x̂p+k + x̂p+2k + x̂p+3k),

– For i = 1, . . . , 9, c(j(i), `(i+1)) =
∑`−1
p=j(x̂p+(i−1)k + x̂p+(i+1)k + x̂p+(i+2)k),

– c(j(10), t) =
∑i0+k−1
p=j (x̂p + x̂p+k + x̂p+3k).

It is no hard to see that there is a one-to-one correspondence between (i0, t)-
paths in D(i0) and 11-sequences of [4k] based on i0. Moreover, the length of an



(i0, t)-path in D(i0) is exactly
∑
i∈W x̂i, for the W ⊂ [4k] associated with the

corresponding 11-sequence based on i0. ut
As a consequence of Theorem 10, the separation problem of 11-step inequal-

ities of Q∗(Ck4k) can be reduced to at most 4k shortest path problems.

In recent years, an active topic of research in the area of polyhedral combina-
torics has been to find compact extended formulations of polynomial problems,
i.e., formulations of the problem such that, with the addition of a polynomial
number of extra variables, require only a polynomial number of inequalities. A
compact extended formulation for the SCP of matrices Cktk with s = 2, 3, 4 and
k ≥ 2 can be obtained by using the following general property.

Let Q = {x ∈ Rn : A1x ≤ b1, A2x ≤ b2}, where A1 has a polynomial number
of rows and there exist m polynomially sized linear programs

(LPi) ziopt(x) = min{ci(x)zi : M izi ≥ di , zi ∈ Rp
i},

with ci(x) a linear function, for i = 1, . . . ,m, and linear functions Li(x), i =
1, . . . ,m, such that, given x̂ ∈ Rn,

A2x̂ ≤ b2 if and only if ziopt(x̂) ≥ Li(x̂), ∀i = 1, . . . ,m.

Then, Q is the projection on x’s variables of

Qext = {(x, y1, . . . , ym) ∈Rn × Rr
1 × · · · × Rr

m

:

A1x ≤ b1,
(M i)T yi ≤ ci(x),∀ i = 1, . . . ,m,

diyi ≥ Li(x),∀ i = 1, . . . ,m,

yi ≥ 0,∀ i = 1, . . . ,m}.
In fact, for a given x, by duality,

ziopt(x) = max{diyi : (M i)T yi ≤ ci(x); yi ≥ 0}.
Then, ziopt(x) ≥ Li(x) if and only if there exists yi ≥ 0 such that (M i)T yi ≤ ci(x)

and diyi ≥ Li(x). Clearly, if m is polynomial on n, Qext is a compact extended
formulation of Q.

Let us consider that Q is the set covering polyhedron of Cktk with t = 2, 3, 4
and k ≥ 2. In this case, the system A1x ≤ b1 corresponds to the boolean con-
straints.

If t = 2, 3, the system A2x ≤ b2 corresponds to the (t+ 1)-inequalities which
can be separated in polynomial time by solving tk shortest path problems [5].

If t = 4, the system A2x ≤ b2 corresponds to the 5-inequalities and the 11-
steps inequalities. In this case, we can separate these inequalities in polynomial
time by solving at most 8k shortest path problems ([5] and Theorem 9).

According to the above discussion, the linear program formulation of the
mentioned shortest path problems allow us to obtain Qext, a compact extended
formulation for the SCP of matrices Cktk with t = 2, 3, 4 and k ≥ 2.
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6 Appendix: Selected omitted proofs

Proof (of Theorem 4).
Let A(Γ ) be the submatrix of A whose rows correspond to the row arcs in

Γ , S(Γ ) be the essential nodes of Γ and NS(Γ ) = [n]\S(Γ ). We will prove that
matrix A(Γ )/NS(Γ ) has |F | rows.

It is clear that if i ∈ NS(Γ ) then either i ∈ ⊗(Γ ) and {i + 1, i, i − 1} is a
path of Γ , or i ∈ •(Γ ) but not in Γ , or i ∈ ◦(Γ ).

Consider the case {i, i+ 1, . . . , i+h} ⊂ ◦(Γ ) and i−1 /∈ ◦(Γ ) and i+h+ 1 /∈
◦(Γ ). Then it is not hard to see that i − 1 ∈ •(Γ ) and i + h + 1 ∈ •(Γ ). So
(i−1, i) ∈ E(Γ ) and (i−1−kt, i−1) ∈ E(Γ ) for some row Ct of A with t ∈ F such
that i = lt+kt. Also, (i+h, i+h+ks) belongs to E(Γ ) for row Cs with s = i+h+1.
In other words, we have the path (i− 1− kt, i− 1, i, i+ 1, . . . , i+h, i+h+ ks) in
Γ . From Theorem 2, every node from i to i+ h belongs to exactly p− 1 rows of
the set {Cj : j ∈ F}. As we can see none of the nodes in the sequence can be the
first or the last in any of the rows in {Cj : j ∈ F}. Hence if a row in {Cj : j ∈ F}
contains a node in the sequence {i, i+ 1, . . . , i+h} then it contains them all. So,
if we delete the sequence in the p− 1 rows, then there is no domination.

Now suppose that {i, i − 1, . . . , i − h} ⊂ ⊗(Γ ) and i + 1 /∈ ⊗(Γ ) and i −
h − 1 /∈ ⊗(Γ ). Then we have that i + 1 ∈ •(Γ ) and i − h − 1 ∈ •(Γ ). Then
there must be (i − h − 1, i − h − 1 + kj) ∈ E(Γ ) corresponding to the row
Cj = {i− h, . . . , i− h+ kj − 1} where lj = i− h and another (i− kv, i) ∈ E(Γ )
corresponding to the row Cv = {i − kv + 1, . . . , i} where lv = i − kv + 1. From
theorem 2, every node from i−h to i belongs to exactly p+1 rows indexed in F .
Again we can check that if a row indexed in F contains a node in the sequence
{i− h, . . . , i− 1} then it contains them all. So, if we delete the sequence in the
p + 1 rows, then there is no domination. Finally if i ∈ •(Γ ) but it is not in Γ
it can be deleted in all the p rows where it belongs and there is no domination
after deletion.

Let define A′(Γ ) the matrix obtained after removing all the nonessential
nodes in Γ . Now we define the digraph D(A′(Γ )) whose nodes correspond to the
essential nodes in Γ and the arcs correspond to (−1)-arcs and the row arcs in Γ
except of the case when there is a sequence of circles, say {i, i+ 1, . . . , i+ h} ⊂
◦(Γ ). In this case we know that i−1 ∈ •(Γ ) and i+h+1 ∈ •(Γ ), then we replace
the path (i−1, i, i+1, . . . , i+h, i+h+ks) in Γ by the row arc (i−1, i+h+ks).

Let consider the circuit Γ ′ of D(A′(Γ )) obtained from Γ after removing all
its nonessential nodes in such a way that every cross or bullet in Γ ′ is a cross or
bullet in Γ .

For every v ∈ S(Γ ) ∩ •(Γ ), there is a row arc in Γ ′ leaving v. Therefore
s = |F ′| = •(Γ ). It follows that every row in A′(Γ ) corresponds to a row arc in
Γ ′. Let v ∈ S(Γ ) ∩ ⊗(Γ ). Then the only arcs in E(Γ ′) to whom v belongs are
(v, v − 1) and (v − ki, v) with v = li + ki − 1 for some i ∈ {1, . . . , s}. Observe
that v − 1 ∈ •(Γ ) and it is the tail of the arc (v − 1, v − 1 + kj) for some
j ∈ {1, . . . , s}. In addition, the arc (v − ki, v) in E(Γ ′) corresponds to the row
{v − ki + 1, . . . , v} ∩ S(Γ ) and the arc (v − 1, v − 1 + kj) ∈ E(Γ ′) to the row
{v, . . . , v + kj − 1} ∩ S(Γ ). If v belongs to other row of A′(Γ ) it is a middle



node of it. If we contract A′(Γ )/v there is no dominating row, since there is
neither a row arc of Γ ′ ending at v − 1 nor row arc of Γ ′ beginning at v. Hence
A′(Γ )/⊗ (Γ ) is a square matrix of order s. Let Γ ′′ be a circuit obtained from Γ ′

by replacing the arc (v− ki, v) by (v− ki, v− 1) every time v ∈ ⊗(Γ )∩ S(Γ ). It
is easy to check that the nodes of Γ ′′ are bullet nodes and still belong to p rows
of A′(Γ ). Moreover, Γ ′′ is a circuit that reaches every node in S(Γ ) ∩ •(Γ ). So
A′(Γ )/⊗ (Γ ) is isomorphic to a circulant matrix Cps . Moreover, since the circuit
is simple we have that gcd(s, p) = 1, otherwise there would be a subcircuit in
Γ ′′. ut

Proof (of Theorem 5). Let rfi(Γ ) be the facet of QI(C
k
n) corresponding to Γ .

Suppose that ◦(Γ ) 6= ∅. From definition of the rfi(Γ ) it follows that ⊗(Γ ) 6= ∅.
Also, a sequence of circles in Γ begins with a bullet, and a sequence of crosses
in Γ ends in a bullet.

We say that a path P in Γ has the (⊗ • ◦)-property if it is of the form
(v, v − 1, v − 1 + k, v − 1 + 2k, . . . , v − 1 + hk, v + hk) for some h ≥ 1. It is clear
that v ∈ ⊗(Γ ), v + hk ∈ ◦(Γ ) and v − 1 + lk ∈ •(Γ ) for l = 0, . . . , h.

It is straightforward to check there is such a path in Γ . Assume that P has
the (⊗ • ◦)-property and the smallest possible value h.

Let Φ be the set of arcs obtained from Γ after replacing P by the path
(v, v + k, . . . , v + hk).

Claim Φ is a simple circuit.

Proof (of the claim). In order to prove that Φ is a simple circuit, we need to
show that v + lk /∈ V (Γ ) for every l = 1, . . . , h− 1.

Observe that if v + jk ∈ V (Γ ) for some 1 ≤ j ≤ h − 1 then v + jk /∈ ⊗(Γ )
since (v+jk, v−1+jk) /∈ Γ . Also, v+k /∈ ◦(Γ ) since (v−1+jk, v+jk) /∈ E(Γ ).
Hence v + jk ∈ •(Γ ).

Then, let j be the smallest number such that 1 ≤ j ≤ h and v + jk ∈ V (Γ ).
If j = h then Φ is a simple circuit and the claim follows.

Assume that 1 ≤ j ≤ h− 1. Then the only possible arc of E(Γ ) that reaches
the node v+jk is the arc (v+1+jk, v+jk) and then (v+jk, v+(j+1)k) ∈ E(Γ ).
If the circuit Γ continues from v + (j + 1)k with arcs of length k it arrives at
node v + hk. But this node has already been achieved by Γ . So, there must be
j+1 ≤ m ≤ h−1 such that (v+mk, v+1+mk) ∈ E(Γ ). Hence v+1+mk ∈ ◦(Γ )
and there is a path P ′ = (v+1+jk, v+jk, v+jk, v+(j+1)k, . . . , v+mk, v+1+mk)
in Γ . But, P ′ has the (⊗•◦)-property with m−j < h. Then P is not the shortest
path with the property and the claim follows. ut

So, Φ is a simple circuit with the same number of row arcs as Γ . Also,
|◦(Φ)| = |◦(Γ )| − 1 and |⊗(Φ)| = |⊗(Γ )| − 1. Hence the rfi(Γ ) is dominated by
rfi(Φ) and the theorem follows. ut

Proof (of Theorem 6). Let us call N the set of all non essential nodes in (Γ )
plus the essential crosses in (Γ ), i.e. N = NS(Γ ) ∪ ⊗(Γ ).

According to Theorem 4, if we delete all nodes in N in every row Ci with i ∈
F , it holds that

∣∣Ci ∩ S(Γ ) ∩ •(Γ )
∣∣ = p. So, if we show that

∣∣Ci ∩ S(Γ ) ∩ •(Γ )
∣∣ ≥



p for every i /∈ F , we get that Ckn/N is isomorphic to Cps . And also we obtain
that gcd(s, p) = 1.

Suppose there is a row Cz+1 with z + 1 /∈ F , such that

|{z + 1, . . . , z + k} ∩ S(Γ ) ∩ •(Γ )| ≤ p− 1.

Then (z, z+ k) /∈ E(Γ ). From Lemma 5 ◦(Γ ) = ∅ and then z /∈ •(Γ )∩S(Γ ).
Let us call {u1, u2, . . . , ul} = {z+1, . . . , z+k}∩S(Γ )∩•(Γ ) with 1 ≤ l ≤ p−1.
Let u0 be the first essential bullet that precedes z and then (u0, u0 + k) ∈

E(Γ ). But u0 + k precedes z + k and u0 6= z then

{u0 + 1, . . . , u0 + k} ∩ S(Γ ) ∩ •(Γ ) ⊆ {u1, u2, . . . , ul}.
Hence

∣∣Cu0+1 ∩ S(Γ ) ∩ •(Γ )
∣∣ ≤ l ≤ p − 1 contradicting Theorem 4. Thus

N = NS(Γ ) ∪ ⊗(Γ ) is such that Ckn/N is isomorphic to a circulant matrix Cps
with gcd(s, p) = 1.

In [4], the minor inequality associated with Cps is obtained from the rows
Ci+1 for every i /∈ N . But, i /∈ N if and only if i ∈ S(Γ ) ∩ •(Γ ). Hence i /∈ N
if and only if (i, i + k) ∈ E(Γ ). The family of rows involved in obtaining the
minor inequality coincides with the rows indexed in F . Also in [4] it was proved
that every i ∈ W belongs to exactly p + 1 rows in F . Hence W = ⊗(Γ ). As a
consequence every rfi defining a facet of Q∗(Ckn) is a minor inequality. ut

Proof (Theorem 9). From Corollary 1 we know that every non boolean defining
a facet of Q∗(Ck4k) different from a 5-inequality, is of the form

2
∑
i∈W

xi +
∑
i/∈W

xi ≥ 6. (9)

From Theorem 8 we know that, for every minimum covers xi with i ∈ [k],
|xi ∩W | = 3 or, equivalently, |xi \W | = 1.

First of all, we need to prove that if xi\W = {i+jk} for some j ∈ {0, 1, 2, 3},
then xi+1 \W = {i+ 1 + jk} or xi+1 \W = {i+ 1 + (j + 1)k}.

Let Γ be a circuit associated with (9). Then, ⊗(Γ ) = W . W.l.o.g. we can
assume that xi \⊗(Γ ) = {i+ 3k}. We will prove that xi+1 \⊗(Γ ) = {i+ 1 + 3k}
or xi+1 \ ⊗(Γ ) = {i+ 1}.

In fact, the only way to reach i + k is through the arc (i + 1 + k, i + k). In
fact, if (i, i+k) ∈ E(Γ ), Γ would not be a circuit and if (i−1+k, i+k) ∈ E(Γ ),
Γ would not be simple. Therefore, i+ 1 + k ∈ ⊗(Γ ). With the same reasoning,
i+ 1 + 2k and i+ 2 + 2k belong to ⊗(Γ ).

Observe that the row arcs in Γ correspond to the indices in F = {i ∈ [4k] :
i /∈ W, i − 1 ∈ W}. Then, inequality (9) is a rfi corresponding to F and p =

maxj∈[4k]
∑
i∈F aij − 1 ≥ 2. If s = |F |, we have that

⌈
s
p

⌉
= 6. Since s is not a

multiple of p, we have that s = 5p+ 1.
Let Aj be j-th column of Ck4k. Observe that Ai = Cj−k+1 and, for all mini-

mum cover {i, i+, k, i+ 2k, i+ 3k}, the columns Ai, Ai+k, Ai+2k, Ai+3k define a
partition of [4k].



Let i ∈ [4k] and w.l.o.g. suppose that xi ∩ W = {i, i+, k, i + 2k}. Since
W = {j ∈ [4k] :

∑
i∈F aij = p+ 1},

∑
t∈F

atj = p+ 1 for j ∈ {i, i+ k, i+ 2k} (10)

and
∑
t∈F

at(i+3k) ≤ p. (11)

Since |F | = 5p+1 and by (10),
∣∣F ∩Ai∣∣ =

∣∣F ∩Ai+k∣∣ =
∣∣F ∩Ai+2k

∣∣ = p+1,

we have that
∣∣F ∩Ai+3k

∣∣ = 5p+1− (3p+3) = 2p−2. By (11),
∣∣F ∩Ai+3k

∣∣ ≤ p,
implying p ≤ 2. Therefore, we have that p = 2 and s = 11.

Given i0 ∈ F , for each j ∈ F let i(j) ∈ [i0.i0 + k− 1] such that j = i(j) mod
k. Clearly, {i(j) : j ∈ F} is an 11-sequence based on i0.

ut


